Simulation

Upwing Enhanced Product
Simulator (EPS)

The Upwing Enhanced Production Simulator (EPS) uses an integrated approach to simulate gas production enhanced by the Upwing subsurface compression system (SCS) and to predict reservoir response. The SCS is a form of artificial lift, which increases wellbore drawdown at the compressor intake and boosts wellbore pressure at the compressor discharge.

How does EPS work?

Upwing EPS evaluates the production enhancement achieved with subsurface compression using two independent methodologies. The first model uses an analytical approach to calculate gas flow rate and pressure drop across the production tubing for a single phase compressible fluid by integrating the mechanical balance equation. The second model uses numerical simulation to converge mass flow rate and isentropic efficiency derived from the momentum equation across the compressor to compute suction pressure and production increase. Both models use a known surface boundary condition to calculate the ratio of downstream to upstream pressure across the subsurface compressor.

What can EPS tell me about my wells?

Working with an Upwing specialist, customers can input commonly known well data, including wellhead pressure, wellhead temperature, bottom hole temperature, inflow performance relationship, pipe length, pipe ID, pressure ratio and fluids composition to simulate the increased gas flow rate with a subsurface compressor and compare it with gas production without artificial lift to explain the impacts of subsurface compression on their gas production and recoverable reserves. The simulations provide insights on how to plan completion geometry and leverage the capability of subsurface compression to maximize the production gain potential.

Input Data
see example
Absolutely Required
Required
Optional
Upwing Input
Wellbore
Properties
Tubing & Casing Data
Perforation & Profile Depths
Wellhead Conditions
Directional Survey
Reservoir
Properties
Reservoir Pressure
Reservoir Temperature
Thickness
Porosity & Permeability
Petrophysical Summaries
Well Logs
Geomechanics Geochemistry
Fluids
& PVT
Gas Gravity
Liquid Density
Gas Composition
Compositional PVT
Well Logs
Geomechanics Geochemistry
Production &
Pressure Data
Production History
Static/Dynamic Pressure Data
IPR/VLC Data
Well Tests
Simulation Model
Completion Reports
Well Tests
Simulation Model
Completion Reports
Decline
Parameters
Baseline Rate
EUR
Final Rate
Production Period
Effective Decline Rate
Terminal Decline
Compressor
Design
Power Input
# Stages
Max Speed
Min Prod. Gain
Output Data
Production
Gain
see example
Pressure
Traverse
see example
Compressor
Size & Type
see example
Power
see example
Forecast &
Reserves
see example

What does this mean for the industry?

To date, the increased gas production ranging from 20 to 150% simulated with a subsurface gas compressor in gas wells is consistent with the increased drawdown by artificial lift in oil wells. Parametric studies completed by Upwing have illustrated the different degree of impact by various reservoir dynamics, well geometry, and compressor factors on the well productivity with artificial lift downhole.